

The new era of nano-technology has made many advances in water treatment possible in residential as well as commercial applications. NanoSoft has proven to be very effective in both applications even at high temperatures and hardness levels. The *NanoSoft* System represents the superior alternative with respect to dealing with the symptoms of water hardness without resorting to ion exchange (salt or potassium passed systems). The commercial grade media is now available for residential consumers. What you will read in this story is an example of commercial water treatment using *NanoSoft* media. This represents an extreme case far beyond any residential demand or application the boiler/heat exchange is just a larger version of a residential hot water heater.

Boiler System

This stainless steel heat exchange is part of a boiler system in an industrial application. The energy source for the heat exchange is a steam generator whose steam heats the interior of the stainless steel tubing of the heat exchanger to 338 Fahrenheit resulting in an exterior surface temperature of 266 degrees Fahrenheit. The source water has a temperature of 52 degrees Fahrenheit. It travels through the heat exchanger pipe and is heated to 185 degrees Fahrenheit in seconds. The heated water then is supplied to a 13,000 gallon hot water storage tank that in turn supplies all the hot water requirements for the entire factory.

The History

The boiler system was new installed in August of 2002 with raw water treatment consisting of traditional water softeners (Duplex Fleck 2900 24.X72.). The system was operating in this configuration for the first 18 months.

Numerous Softener failures/service problems combined with the substantial operating cost (salt usage approaching \$45,000 worth per annum) and industrial discharge issues caused the owner to look for alternatives.

The first attempt was to try and get by without pre-treating the raw water at all; this proved to be disastrous. After only two and a half months the heat exchanger had scaled up to the point where the hot water supply to the plant had been reduced to a trickle. Pulling the heat exchanger for inspection

and cleaning proved to be no easy task. The unit had scaled up so complete that it required the use of chains attached to hydraulic presses to force the coil out of its housing. The scale so completely surrounded the core that it visibly consisted of a big lump of limestone in the cylindrical shape of the heat exchanger housing rather than looking at the stainless steel core. It took two days of careful cleaning with phosphoric acid to restore the heat exchanger to a normal operating condition.

Finally in the spring of 2004 a system using the NanoSoft was installed (Single tank, in/out in up flow operation). Ever since then, this boiler system has been in continuous service protected by no other water treatment but NanoSoft. Hot water usage in the plant averages 80,000 gallons per day, 6 days a week and 50 weeks per year. The water treated has a calcium hardness of 446 ppm (26 grains per gallon) and small traces amounts of iron. For the entire service life to date, there have been no variations or drop in the performance/efficiency of the boiler system.

At the time of these photographs, the boiler had already heated in excess of 80 million gallons of water in its service life. More importantly, the photographs show the heat exchanger after one year of uninterrupted service having heated in excess of 24 million gallons of water since the last annual inspection. This spring (2008) the annual inspections of the boiler were suspended indefinitely. Since the previous two inspections had not yielded any need for cleaning and the system was operating within specifications the owner chose not to bother going forward.

No service problem or failure resulting in down time for the plant, no capacity constraints and zero operating costs.

Introducing **SpectroSoft**[™]

Scale & Corrosion Prevention with nano-technology

> NANOSOFT (NS-Media)

ATER PROFES

 \bigcirc

0

0

Coolabah Water - Proudly Australian www.coolabahwater.com.au 111 Biroomba Lane (PO Box 1160) WAGGA WAGGA NSW 2650 P (02) 6925 8555 F (02) 6925 8588 E filters@coolabahwater.com.au

This media has been tested to meet the following: **German Standards** DW-9191 **DVGW-W510 DVGW-W512** DVGW-W2700 and KTW assessments – hygiene testing **American Standards** NSF/ANSI-61 & 42

A Division of Neylan Water Pty Ltd Mineral Removal Technologies Pty Ltd SOLE AUSTRALIAN DISTRIBUTOR

SpectroSoft[™][TAC]

Scale and Corrosion Prevention

NS-Media is based on nano-technology or Template Assisted Crystalisation. In this process atoms are placed in a special structure so that a template is created. Nano-technology is so effective, it requires a contact time of three seconds.

The media is used in an up-flow system, therefore only an in-out valve is needed. The media transforms the calcium ions into sub-micron sized calcium crystals which move in the water flow. These crystals so small, they are only visible through a microscope. They are completely stable and resist destruction by heat. These crystals do not aggregate or attach to any surfaces, resulting in the water as if free of calcium hardness. The media can be used in systems that run continuously. There are no capacity constraints and regeneration is not necessary.

NS-Media is very effective as pre-treatment for membrane filtration like reverse osmosis. It prevents the scaling of the membranes with calcium carbonate and has been successful in de-scaling fouled membranes within ten days.

Operating Principle

The NS-Media is operated in a fluidized bed. Due to the media beads "bumping into each other" and the shearing forces of the passing water by the media granules, the micro crystals are released into the water stream. The crystals being devoid of a charge (as the ionic charges of its building blocks, calcium and carbonate neutralize each other) now are suspended in the water travelling in the flow of the water unable to attach themselves to the plumbing surfaces.

ADVANTAGES

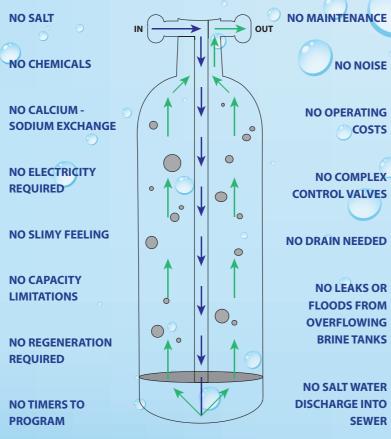
- 100% scale prevention for pipes and hardware
- 100% corrosion prevention
- Long lifetime
- **Highly efficient**
- Healthier water

TECHNICAL DATA

- Surface: Nano Surface
- Matrix: Special Core
- Size: 0.4 n 0.7mm
- Colour: White

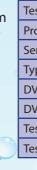
APPLICATIONS

- Pipes
- Pre-treatment for RO membranes
- **Cooling Towers** •
- **Boilers / Heat Exchangers** .
- Beverage industry
- Municipal Systems



Nanosoft testing apparatus for scale prevention under DVGW W510 rules and Standards, Germany. Hard water is passing through the testing cells at a continuous flow where the water is heated at 80 degrees Celcius to raise the scale potential of the water even further. The test is designed to simulate the worst scenario with respect to water chemistry, this method simulates the water usage of the average German household over a lengthy time period. The pass rate for this Standard is 80%

The Standard DVGW W510 was established about 1997, and is the only Standard available for scale prevention testing in the world today. The USA Water Quality Association (WQA) has been trying to set up a protocol for over eight years.


The Test Cell on the left hand side is the untreated hard water. Scale formation and turbid water in this cell is clearly evident.

The Test Cell on the right hand side is water that is pre-treated through NS-Media. There is no evidence of any scale formation or turbid water.

Standards Testing

NS-Media was assessed in a warm water circulation system according to DVGW-process sheet W512 "Proceedings for the assessment of efficacy of water treatment system for the reduction of gravel congregation" (09/1996). This test report contains 4 pages. The following test results relate to both type examinations submitted on the 09.02.2012 and requirements and tests illustrated in DVGM process sheet #W510 and linked to DVGM-process sheet W512, paragraph 3. Requirements and tests according to DVGWprocess sheet W512, Paragraph 3

	Properties of water sam	nple acco	ording to DVGW	/-process shee	et W512	Paragraph 3.1						
1	Sample requirements degrees C) of at least 30 mg sample has to have a minin precipitation capacity, the u					ing water, which holds/exhibits a calcite precipitation capacity (calculated at 15 g/L CaCo3 in a not previously heated state. The total water hardness of the wate mum amount of 3.5mol/3 as sum of alkaline earths. To match the required calcite used drinking water will be adjusted using deacidification procedures to the nalysis from 31.05.2011 and 28.06.2011).						
	Test parameters (temperature, water flow rate, electrical work)											
	State of test B, Test no: 11, 21.02.11 – 13.03.2012											
			Boiler 1 = NS-Media		Boiler 2 = Blind		Boil	Boiler 3 = NS-Media		Boiler 4 = Blind		
2	Temperature (degrees C) +-		80		80		80	80		80		
	Duration of test [d]		21		21		21	21		21		
	Water flow rate [L]		2.785		2.750		2.74	2.745		2.755		
	Electrical work [kWh]		347.7		302.7		299	299.0		320.5		
	Results after analytical evaluation											
	Test stand/test type: B, Test no:		11, 21.02.2011 – 13.03.2012.		SCALE		LE FORI	FORMING DATA				
			Boiler 1 = NS-Media		Boiler 2 = Blind		Boil	Boiler 3 = NS-Media		Boiler 4 = Blind		
3	Heating coil		0.001		0.260		0.00	0.000		0.188		
	Container wall		0.000		0.058		0.00	0.000		0.001		
	Residue >500pm		0.000		0.075		0.00	0.000		0.129		
	Sum total (M)		0.001		.0393			0.000				
	Sum total (M)		0.001		.0393		0.00	0		0.318		
Durin		limescale	1	vice according						0.318		
	g the assessment of the l	limescale	1	vice according		GM-process sheet W				0.318		
Produ	g the assessment of the l uct name (type)		e protection de		g to DV	GM-process sheet W NS-Media	/512, pa	ragraph 3.1				
Produ Serial	g the assessment of the l uct name (type) No.	2011	e protection de -09-21-101 and	2011-09-21-1	g to DV(GM-process sheet W NS-Media Test stand	/512, pa	ragraph 3.1 Test – No.	ated accordi	11		
Produ Serial	g the assessment of the l uct name (type)	2011	e protection de -09-21-101 and roperties were	2011-09-21-1 calculated as	g to DV(GM-process sheet W NS-Media Test stand the calcite precipita	/512, pa B tion cap	ragraph 3.1 Test – No.	ated accordi	11		
Produ Serial The fo Param	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter	2011	e protection de -09-21-101 and roperties were Sampled On	2011-09-21-1 calculated as 28.02.2012	g to DV(GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor	/512, pa B tion cap	ragraph 3.1 Test – No. Þacity calcula	0	11 ng to DIN38404-10.		
Produ Serial The fo Param Temp	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter erature	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C]	2011-09-21-1 calculated as 28.02.2012 10.1	g to DV(GM-process sheet W NS-Media Test stand the calcite precipita	/512, pa B tion cap	ragraph 3.1 Test – No. bacity calcula The effic	iency factor	11 ng to DIN38404-10.		
Produ Serial The fo Param Temp Electr	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter erature ical conductivity	2011	e protection de -09-21-101 and roperties were Sampled On	2011-09-21-1 calculated as 28.02.2012 10.1 10.1	g to DV(GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor	/512, pa B tion cap	ragraph 3.1 Test – No. bacity calcula The effic to DVGV	iency factor	11 ng to DIN38404-10. is calculated accord eet W512 paragraph		
Produ Serial The fo Param Temp Electr pH va	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter erature ical conductivity lue	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56	g to DV(GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements	/512, pa B tion cap	ragraph 3.1 Test – No. Pacity calcula The effic to DVGV following	iency factor V-process sh g the formu	11 ng to DIN38404-10. ' is calculated accorc eet W512 paragraph la		
Produ Serial The fo Param Temp Electr pH va Acid o	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter erature ical conductivity lue capacity KS to pH 4.3	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16	102 well as	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements	/512, pa B tion cap	ragraph 3.1 Test – No. bacity calcula The effic to DVGV following $f_w = (M_{un})$	iency factor V-process sh g the formu _{treated} -M _{treated})	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated}		
Produ Serial The fo Param Temp Electr pH va Acid o Base o	ig the assessment of the l uct name (type) No. blowing physic-chemical neter erature ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2	2011	e protection der -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mol/m3]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40	102 well as	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result	B tion cap	ragraph 3.1 Test – No. pacity calcula The effic to DVGV following $f_w = (M_{un})$ Boiler 1	iency factor V-process sh g the formu	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated}		
Produ Serial The fo Param Temp Electr pH va Acid c Base o Calciu	ig the assessment of the l uct name (type) No. bllowing physic-chemical neter erature ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+)	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mol/m3] [mg/l]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40 115	102 well as	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements	/512, pa	ragraph 3.1 Test – No. Pacity calcula The efficito DVGV following $f_w = (M_{un})$ Boiler 1 = w 0.997	iency factor V-process sh g the formu _{treated} -M _{treated}) = NS-Media	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated} Boiler 3 = NS-Med		
Produ Serial The for Param Param Electr pH va Acid c Base c Calciu Magn	ig the assessment of the l ict name (type) No. blowing physic-chemical neter erature ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) lesium (Mg2+)	2011	e protection der -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mol/m3] [mg/l] [mg/l]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40 115 7.8	y to DV 102 well as	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency	/512, pa	ragraph 3.1 Test – No. Pacity calcula The efficito DVGV following $f_w = (M_{un})$ Boiler 1 = w 0.997	iency factor V-process sh g the formu _{treated} -M _{treated}) = NS-Media	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated} Boiler 3 = NS-Med 1.000		
Produ Serial The for Param Param Electr pH va Acid c Base c Calciu Magn Sodiu	ig the assessment of the l ict name (type) No. billowing physic-chemical ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) esium (Mg2+) m (Na+)	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mol/m3] [mg/l] [mg/l]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40 115 7.8 10.6	a to DV 102 well as 4 No The	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency Mean efficiency tes e results relate to the	I factor factor f	ragraph 3.1 Test – No. Pacity calcula The efficito DVGV following $f_w = (M_{un})$ Boiler 1 0.997 v	iency factor V-process sh g the formu _{treated} -M _{treated}) = NS-Media C	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated} Boiler 3 = NS-Med 1.000 0.999		
Produ Serial The fo Param Temp Electr pH va Acid c Base o Calciu Magn Sodiu Potass	ig the assessment of the l ict name (type) No. No. billowing physic-chemical meter erature ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) esium (Mg2+) m (Na+) sium (K+)	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mol/m3] [mg/l] [mg/l] [mg/l]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40 115 7.8 10.6 1.8	a to DV 102 well as 4 No The	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency Mean efficiency tes	I factor factor f	ragraph 3.1 Test – No. Pacity calcula The efficito DVGV following $f_w = (M_{un})$ Boiler 1 0.997 v	iency factor V-process sh g the formu _{treated} -M _{treated}) = NS-Media C	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated} Boiler 3 = NS-Med 1.000 0.999		
Produ Serial The fo Param Temp Electr pH va Acid o Base o Calciu Magn Sodiu Potase Chlori	ig the assessment of the l ict name (type) No. billowing physic-chemical ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) esium (Mg2+) im (Na+) sium (K+) ide (Cl-)	2011	 -09-21-101 and -09-21-101 and -operties were Sampled On [Degrees C] [ms/m] [mol/m3] [mol/m3] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 10.1 7.56 5.16 0.40 115 7.8 10.6 1.8 20.3	a to DV 102 well as 4 No The	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency Mean efficiency tes e results relate to the 02.2012. requirement	/512, pa B tion cap factor f factor f factor f e type e nts cond	ragraph 3.1 Test – No. Pacity calcula The efficitor DVGV following $f_w = (M_{un})$ Boiler 1 = 0.997 v xaminations terning the efficitor	iency factor V-process sh g the formu treated - M _{treated}) = NS-Media 0 submitted - efficacy facto	11 ng to DIN38404-10. is calculated according to be considered with the constraint of the con		
Produ Serial The fo Param Temp Electr pH va Acid c Base o Calciu Magn Sodiu Potas: Chlori Nitrat	ig the assessment of the l ict name (type) No. No. bllowing physic-chemical ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) lesium (Mg2+) im (Na+) sium (K+) ide (Cl-) e (NO3)	2011	e protection de -09-21-101 and roperties were Sampled On [Degrees C] [mS/m] [mol/m3] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l]	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 7.56 5.16 0.40 115 7.8 10.6 1.8 20.3 3.4	a to DV 102 well as 4 No The	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency Mean efficiency tes e results relate to the 02.2012. requiremen The NS-M	r factor f factor f e type e nts con	ragraph 3.1 Test – No. Pacity calcula The efficitor DVGV following $f_w = (M_{un})$ Boiler 1 0.997 v xaminations terning the efficitor used in	iency factor V-process sh g the formu treated - M _{treated} = NS-Media C submitted efficacy factor this tes	11 ng to DIN38404-10. is calculated according to be accordi		
Produ Serial The fo Param Temp Electr pH va Acid o Base o Calciu Magn Sodiu Potass Chlori Nitrat Sulfat	ig the assessment of the l ict name (type) No. billowing physic-chemical ical conductivity lue capacity KS to pH 4.3 capacity KS to pH 4.3 capacity KS to pH 8.2 im (Ca2+) esium (Mg2+) im (Na+) sium (K+) ide (Cl-)	2011 l water p	 -09-21-101 and -09-21-101 and -operties were Sampled On [Degrees C] [ms/m] [mol/m3] [mol/m3] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 	2011-09-21-1 calculated as 28.02.2012 10.1 10.1 10.1 7.56 5.16 0.40 115 7.8 10.6 1.8 20.3	a to DV 102 well as 4 No The	GM-process sheet W NS-Media Test stand the calcite precipita Efficiency Factor Requirements Result Single efficiency Mean efficiency tes e results relate to the 02.2012. requirement The NS-M used in a	r factor f factor f factor f e type e nts conc edia anot	ragraph 3.1 Test – No. bacity calcula The efficient to DVGV following $f_w = (M_{un})$ Boiler 1 0.997 v xaminations terning the efficient used in her app	iency factor V-process sh g the formu treated - M _{treated}) = NS-Media Submitted f efficacy factor this tes lication	11 ng to DIN38404-10. is calculated accord eet W512 paragraph la / M _{untreated} Boiler 3 = NS-Med 1.000 0.999 for assessment on thor were met.		

ne Limescale Protection Device						
est item	Limescale protection device					
oduct name (Type)						
erial number	2011-09-21-101 and 2011-09-21-102					
pe of assessment/test	Type-examination according to DVGM W510					
VGW-Az	11-0568-W (29.11.2011)					
VGW-Reg. No.	Applied					
est type/test stand	B Test No. 11					
est period	21.02.2012-13.03.2012					